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Spiral waves in a coupled network of sine-circle maps
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A coupled two-dimensional lattice of sine-circle maps is investigated numerically as a simple model for
coupled network of nonlinear oscillators under a spatially uniform, temporally periodic, external forcing.
Various patterns, including quasiperiodic spiral waves, periodic, banded spiral waves in several different
polygonal shapes, and domain patterns, are observed. The banded spiral waves and domain patterns match well
with the results of earlier experimental studies. Several transitions are analyzed. Among others, the source-sink
transition of a quasiperiodic spiral wave and the cascade of ‘‘side-doubling’’ bifurcations of polygonal spiral
waves are of great interest.
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Nonlinear oscillators driven by a small amplitude extern
forcing can either exhibit quasiperiodic~unlocked! or peri-
odic ~locked! oscillations, depending on the values of t
forcing amplitude and frequency@1,2#. For the frequency-
locked case, the oscillator is detuned from its natural f
quency and oscillates at a rational multiple of the exter
driving frequency. Systems exhibiting such a phenome
are extensively studied over the past few decades for ha
a universal structure of frequency-locked states based on
Farey construction and for exhibiting a generic route to
low-dimensional chaos@1#.

As recent experimental and theoretical studies have
vealed, the phenomenon of frequency locking also arise
spatially extended systems under an external forcing@3–11#.
A variety of interesting patterns can be formed in these s
tems due to the degree of freedom in space. Petrovet al.
addressed this issue for the first time in an experiment
ploying a light sensitive Belousov-Zhabotinsky~BZ!
reaction-diffusion system@5#. The system was brought to a
oscillatory regime and perturbed in a time-periodic man
using light. Several interesting spatial patterns, includ
fronts and labyrinth of 2:1 mode locking, irregular doma
pattern of 3:1 mode locking, and ‘‘bubble patterns’’ of 3
mode locking, had emerged.

Following these experimental observations, several mo
systems were investigated to elucidate the underlying pat
forming mechanism@12,9,7,8,11#. Among others, the nu
merical and theoretical analyses done by Elphicket al. @9# on
a generic complex Ginzburg-Landau~CGL! equation is quite
notable. They have shown that there can be different type
fronts and front instabilities in frequency-locked regim
similar to the front instabilities mediating static labyrin
patterns and traveling~spiral! waves in a bistable system
@13–15#. So far, similar patterns are also produced in seve
different model reaction-diffusion systems under an exter
forcing @7,12,9,8#. Thus, there seem to be some univer
rules, concerning the types of patterns and bifurcations a
ing in a spatially extended network of nonlinear oscillato
under an external forcing.
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Along this venue of thought, we have studied patte
arising in a coupled map lattice~CML! of sine-circle maps.
The phenomenon of frequency locking is, perhaps, best
derstood by the sine-circle map for its simplicity and co
putational efficiency@1#. Therefore, it seems rather natural
use a CML of sine-circle maps for investigating gene
properties of the patterns arising in a coupled network
nonlinear oscillators under an external forcing. Althou
various CMLs~especially, of the logistic maps! have been
investigated a lot in the past@16–18#, they were mostly con-
cerned about spatiotemporal chaos.

The CML of sine-circle maps is given by

xi j
(t11)5 f ~xi j

(t)!1e(
l ,m

@g~xlm
(t)!2g~xi j

(t)!#~mod1!, ~1!

where f (x)5x1V1(K/2p)sin 2px and g(x)52sin(2px).
The variablexi j is the oscillation phase of the square latti
site (i , j ). The f (x) is the sine-circle map and the followin
summation term represents the interactions with four nea
neighbors.V, K, and e are the bare rotation number, th
strength of the forcing, and the coupling constant, resp
tively. Square lattice of 1283128 grids is used unless othe
wise mentioned. No-flux boundary condition is us
throughout the paper.

The sine-circle mapf (x) can produce a variety of differ
ent mode-locked states~resonant bands! based on the param
eter values ofK andV. Our current investigation is mainly
focused on the 2:5 resonant band as a typical example on:
m resonances (n andm are positive integers! and its vicinity,
and this is in a good contrast with the earlier model stud
@12,9,7,8,11# that were mainly focused on elementaryn:1
resonant bands~i.e., m51 cases!. Figure 1 illustrates three
different types of patterns observed within or near the
resonant band. The smooth spiral wave of Fig. 1~a! has a
quasiperiodic local dynamics as its first return map of a lo
time series well illustrates. On the other hand, the squa
shaped spiral wave of Fig. 1~b! exhibits a periodic local dy-
namics as the map repeatedly visits the five points~1–5!.
The domain pattern shown in Fig. 1~c! also has a periodic
local dynamics. Unlike the rotating quasiperiodic spir
©2003 The American Physical Society08-1
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wave, the square-shaped periodic spiral wave and the dom
pattern are both standing waves and are sensitive to the
tial condition. For example, the patterns in Figs. 1~b! and
1~c! are obtained as the value ofV is gradually increased, in
particular, from the regular spiral wave state shown in F
1~a!.

The transition from the quasiperiodic spiral wave of F
1~a! to the periodic spiral wave of Fig. 1~b! can be charac-
terized in two different ways. As the value ofV increases,
the quasiperiodic spiral wave starts to bend acquiring
square symmetry@see Fig. 2~a!#. When the value ofV in-
creases further, the bent spiral wave becomes more flatt
and eventually becomes the square-shaped spiral wav
Fig. 1~b!. While this shape transformation takes place,
distribution of the phase variablex also changes dramaticall
from a dispersed spectrum@Fig. 2~b!# to a state with five
localized peaks@Fig. 2~d!# via an intermediate state@Fig.
2~c!#. The emergence of the sharp peaks in the phase a
distribution reflects the fact that steep phase fronts have b
established in space, separating the five domains of diffe
phases. The finite width of the peaks in the phase distribu

FIG. 1. Patterns observed in a sine-circle CML and the co
sponding first return maps of a local time series:~a! regular, quasi-
periodic spiral wave (V50.403 87), ~b! square-shaped, periodi
spiral wave (V50.404 13), and~c! periodically oscillating domain
(V50.406 30). A stack of four line segments with different pha
values is used as an initial condition. Throughout this paper,
values ofK ande are fixed at 0.75 and 0.002, respectively.

FIG. 2. Quasiperiodic to periodic spiral wave transition:~a! qua-
siperiodic spiral wave having a square symmetry (V50.404 10),
~b! phase angle probability density function~PDF! of a quasiperi-
odic spiral wave,~c! PDF for ~a!, and~d! PDF for a periodic spiral
wave. V is ~b! 0.403 50,~c! 0.404 10, and~d! 0.404 13, respec-
tively.
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of Fig. 2~d!, nevertheless, indicates that the phase fronts h
a finite width. The 5-phase spiral wave is the reminiscen
the 2:5 resonant band. Since the spiral shape changes
tinuously and the widths of the phase fronts narrow do
gradually, one may conclude that the transition of the qua
periodic spiral wave to the periodic spiral wave is contin
ous.

The square-shaped spiral wave further transforms to
domain pattern of Fig. 1~c! as the parameterV approaches
the right end of the 2:5 resonant band: The spiral first dila
from the boundary and opens up as shown in Fig. 3~a!. This
process takes place in a continuous manner as shown in
3~b!: The central region occupied by the square-shaped sp
shrinks rapidly but continuously to zero. The domain patte
persists until the system reenters a quasiperiodic reg
upon increasing the value ofV.

In addition to the square-shaped spiral wave and the
main pattern, various polygonal spiral waves are also fou
within the same 2:5 resonant band~see Fig. 4!. In other
words, multiple attractors~spirals! can coexist even for a
fixed value ofV @see Fig. 4~e!#. Thus, the final state being
selected depends on the initial condition. For example,

-

e

FIG. 3. Transition of a square-shaped spiral wave to a dom
pattern:~a! an intermediate state exhibiting both a square-sha
spiral ~the middle part! and a domain state~the outer part! @V
50.406 19# and ~b! proportion of the spiral domainP vs V.

FIG. 4. Periodic spiral waves having~a! 4 sides,~b! 8 sides,~c!
16 sides, and~d! an infinite number of sides.~e! Phase diagram of
polygonal spiral waves.V is 0.404 13, 0.404 28, 0.404 29, an
0.4043@from ~a! to ~d!#. The polygonal spirals are, in general, n
equilateral. A square lattice of 2563256 grids is used.
8-2
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regular, octagonal spiral wave of Fig. 4~b! is obtained by
decreasing the value ofV from the smooth, banded spira
wave of Fig. 4~d!. But if one had used the square-shap
spiral wave of Fig. 4~a! as an initial condition and increase
the value ofV, the final state would have been the squa
shaped spiral wave itself since it is stable there as well. M
significant of all, higher-order polygonal spiral waves@e,g.,
16-faced spiral wave as shown in Fig. 4~c! or 24-faced spiral
wave~not shown!# are also observed within the 2:5 resona
band. In fact, there seems to be a cascade of side-dou
bifurcations of polygonal spiral waves in an increasing
quence ofV. The maximum number of faces that the p
lygonal spiral can have, or rather that we can identify, see
just limited by the system size.

We note that spatial period-doubling bifurcations have
tracted much attention in recent years in relation to comp
periodic spiral waves@19–22# and to superlattice standin
waves@23,24#. The side-doubling transition of polygonal sp
ral waves, yet, is a different type of spatial period-doubli
cascade. Our preliminary investigation suggests that the
bility of a particular polygonal spiral wave is closely relate
with the stability of a planar wave traveling in a particul
direction on the square lattice. For example, the octago
spiral wave is stable for theV range for which the corre
sponding planar wave is stable in the direction of~1,0! as
well as in the direction of~1,1!.

Figure 5 plots the spatially averaged winding numberr̄ of
the sine-circle CML as a function ofV. The regions of sta-
bility for different types of patterns are illustrated on top
it. Several features are notable here. First of all, the dom
patterns of the type shown in Fig. 1~c! are found to be stable
not only near the right end but also near the left end of
resonant band~shaded regions!: In a decreasing sequence
V, an initial spiral wave becomes a domain pattern enter
the left end~shaded region! of the resonant band. Secon
stable square-shaped spiral waves are found in the w
range of the resonant band~from the pointc to d); in a
decreasing sequence ofV, an initial quasiperiodic spira

FIG. 5. Phase diagram drawn on the spatially averaged wind

numberr̄ of the sine-circle CML~solid line!. The winding number
r of a single sine-circle map is overlaid~dashed line!. ‘‘QP’’ and
‘‘5-P’’ stand for the quasiperiodic spiral wave and the 5-phase
riodic spiral wave, respectively. The domain patterns are stable
the shaded regions only. Polygonal spirals of Fig. 4 also coexis
the 5-P region, but are not shown in this diagram for clarity;
detailed phase diagram of the polygonal spirals is given in Fig. 4~e!.
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wave becomes a square-shaped spiral at pointd. Then, the
square-shaped spiral wave persists until it becomes a dom
pattern entering the shaded area on the left. Third, the ove
shape ofr̄ is nearly identical to the winding numberr of a
single ~uncoupled! sine-circle map, except for the interva
c82c andd82d.

The two pointsc8 and d8, at which r̄ starts deviating
from r, are significant since an interesting source-sink tr
sition arises there. Figure 6 depicts this transition. The re
lar quasiperiodic spiral wave shown in Fig. 6~a! rotates in the
counterclockwise direction generating an outwardly mov
wave train~i.e., the spiral core acts as a source! @25#. When
the parameterV is increased beyondc8, the regular spiral
transforms into an antispiral@Fig. 6~c!# via the intermediate
state@Fig. 6~b!#. The antispiral has chirality opposite to th
regular spiral, but rotates in the counterclockwise direct
as in the regular spiral wave of Fig. 6~a!. Consequently, the
core of the antispiral is a sink. The intermediate state i
mixed state of an inwardly rotating spiral~the small area
around the core! and an outwardly rotating spiral~the re-
maining outer part!. As the parameter increases, the area
ing occupied by the antispiral grows at the expense of
regular spiral. Figure 6~d! quantifies this transition with the
averaged wave numberq̄; q̄ gradually decays approachin
the critical pointc8 from the left and then rapidly increase
beyondc8. Within the resolution of our current numerica
simulations, the transition is continuous. As Fig. 5 illustrat
the average frequency of the antispiral wave~i.e., r̄) is
smaller than that of the bulk mediumr, while the regular
spiral wave has a slightly higher frequency than that of
bulk medium. The source-sink transition arises once agai
point d8.

In summary, as a simple model system of oscillatory m
dia under an external periodic forcing, a coupled network
sine-circle maps is investigated numerically. Stable perio
and quasiperiodic spiral waves are shown to exist in a s
circle CML. Some important characteristics of the patte
observed in the BZ experimental system@5–7,10# and the
continuous CGL equations studied earlier@12,9,7,8,11# are
well captured in this simple model. In particular, the pe

g

-
or
in

FIG. 6. Spiral to antispiral transition:~a! quasiperiodic spiral
wave having a source at its core (V50.403 85),~b! a mixed spiral
wave state (V50.40386), and~c! quasiperiodic spiral wave having
a sink at its core (V50.40387). ~d! Plots an averaged~Fourier

power weighted! wave numberq̄ vs V.
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odic, banded spirals and domain patterns seem to be un
sal features of a driven network of nonlinear oscillators
resonance. There is, however, a subtle difference betwee
banded spiral waves in continuous systems and those o
discrete system. Above all, none of the previous studies
spiral waves, which were carried out in a continuous m
dium, reported a polygonal spiral. In other words, the p
lygonal spirals are believed to be a unique property pert
ing to a discrete system.

Spiral waves having a sink at the core~antispirals! were

FIG. 7. Source-sink transition observed in a numerical simu
tion of CGL equation:] tA5A2(11 ib)uAu2A1(11 ia)¹2A. The
outwardly rotating spiral wave~source! in ~a! is transformed into
the inwardly rotating spiral wave~sink! in ~c! as a continuously
increases:a is 22.0, 20.6, 20.2 from ~a! to ~c!. b is fixed to be
21. Each frame is a gray scale image of Re(A), and has a size o
2563256 grids.
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first discovered by Vanag and Epstein in a recent experim
on an excitable BZ reaction-diffusion system@26,27#. Here,
we have shown that an antispiral wave exists in a disc
model system of sine-circle CML. More recently, as an eff
to understand the underlying mechanism of the antispiral,
have also investigated a two-dimensional complex Ginzbu
Landau equation to confirm the existence of the same t
sition ~see Fig. 7! @29#. Thus, judging from the fact tha
similar transitions are observed in two quite different mod
systems~one is discrete, while the other is continuous!, as
well as in the experiment done by Vanag and Epstein,
spiral to antispiral wave transition seems to be a gen
property of any spiral wave forming system.

Finally, we indicate that the observed phenomena are
just limited to the 2:5 resonant band but seem to be gene
Several other resonant bands that we have checked ha
shape ofr̄ that is similar to the one shown in Fig. 5, i.e., th
transition pointsc8 and d8 also exist for them as well. Be
sides, quasiperiodic spiral waves and periodic, banded s
waves are also popularly observed within~or near! other
resonant bands.

We thank W. G. Choe for helpful discussions. This wo
was supported by the Creative Research Initiatives of
Korean Ministry of Science and Technology.
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