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Spiral waves in a coupled network of sine-circle maps
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A coupled two-dimensional lattice of sine-circle maps is investigated numerically as a simple model for
coupled network of nonlinear oscillators under a spatially uniform, temporally periodic, external forcing.
Various patterns, including quasiperiodic spiral waves, periodic, banded spiral waves in several different
polygonal shapes, and domain patterns, are observed. The banded spiral waves and domain patterns match well
with the results of earlier experimental studies. Several transitions are analyzed. Among others, the source-sink
transition of a quasiperiodic spiral wave and the cascade of “side-doubling” bifurcations of polygonal spiral
waves are of great interest.
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Nonlinear oscillators driven by a small amplitude external Along this venue of thought, we have studied patterns
forcing can either exhibit quasiperiodicnlocked or peri-  arising in a coupled map latticg€€ML) of sine-circle maps.
odic (locked oscillations, depending on the values of the The phenomenon of frequency locking is, perhaps, best un-
forcing amplitude and frequendy,2]. For the frequency- derstood by the sine-circle map for its simplicity and com-
locked case, the oscillator is detuned from its natural freputational efficiency1]. Therefore, it seems rather natural to
ql,!ency and oscillates at a ratio'n??ll' mUIUpIe of the externa se a CML of sine-circle maps for investigating generic
driving frequency. Systems exhibiting such a phenomenomyoperties of the patterns arising in a coupled network of
are extensively studied over the past few decades for havingyniinear oscillators under an external forcing. Although
a universal structure of frequency-locked states based on thg, ious CMLs (especially, of the logistic mapsave been

Farey construction and for exhibiting a generic route to th‘?nvestigated a lot in the pakt6—1§, they were mostly con-

IowAglrpeecr;srii)r;a)\(l Zrifr‘r?gil]fal and theoretical studies have rec_erned about spatigtemporal chaos.
P The CML of sine-circle maps is given by

vealed, the phenomenon of frequency locking also arises in
spatially extended systems under an external forgagLl].
A variety of interesting patterns can be formed in these sys- xi(jt+1):f(xi(j‘))+ > [g(xm)—g(xi(jt))](modl), (1)
tems due to the degree of freedom in space. Pedtosd. l,m
addressed this issue for the first time in an experiment em- . )
ploying a light sensitive Belousov-ZhabotinskyBz) — Where f(x)=x+Q+(K/2m)sin 2mx and g(x) = — sin(2mx).
reaction-diffusion systerfg]. The system was brought to an The variablex;; is the oscillation phase of the square lattice
oscillatory regime and perturbed in a time-periodic mannesite (i,j). Thef(x) is the sine-circle map and the following
using light. Several interesting spatial patterns, includingsummation term represents the interactions with four nearest
fronts and labyrinth of 2:1 mode locking, irregular domain neighbors.(), K, and e are the bare rotation number, the
pattern of 3:1 mode locking, and “bubble patterns” of 3:2 strength of the forcing, and the coupling constant, respec-
mode locking, had emerged. tively. Square lattice of 128128 grids is used unless other-
Following these experimental observations, several modedise mentioned. No-flux boundary condition is used
systems were investigated to elucidate the underlying patteritiroughout the paper.
forming mechanisnm12,9,7,8,11. Among others, the nu- The sine-circle mag(x) can produce a variety of differ-
merical and theoretical analyses done by Elpkitkl.[9] on  ent mode-locked stat¢sesonant banddased on the param-
a generic complex Ginzburg-Land&GL) equation is quite  eter values oK and (). Our current investigation is mainly
notable. They have shown that there can be different types dbcused on the 2:5 resonant band as a typical exampte of
fronts and front instabilities in frequency-locked regime, m resonancesnandm are positive integejsand its vicinity,
similar to the front instabilities mediating static labyrinth and this is in a good contrast with the earlier model studies
patterns and travelingspira) waves in a bistable system [12,9,7,8,1] that were mainly focused on elementami
[13-15. So far, similar patterns are also produced in severatesonant band§.e., m=1 cases Figure 1 illustrates three
different model reaction-diffusion systems under an externatlifferent types of patterns observed within or near the 2:5
forcing [7,12,9,8. Thus, there seem to be some universalresonant band. The smooth spiral wave of Fi¢p) has a
rules, concerning the types of patterns and bifurcations arisguasiperiodic local dynamics as its first return map of a local
ing in a spatially extended network of nonlinear oscillatorstime series well illustrates. On the other hand, the square-
under an external forcing. shaped spiral wave of Fig(l) exhibits a periodic local dy-
namics as the map repeatedly visits the five poiits5).
The domain pattern shown in Fig(cl also has a periodic
*Electronic address: kyoung@nld.korea.ac.kr local dynamics. Unlike the rotating quasiperiodic spiral

1063-651X/2003/68.)/0162084)/$20.00 68 016208-1 ©2003 The American Physical Society



WOO, LEE, AND LEE

@z (b) (©)

A g
1 / 1 o3 1 .
o .
Xn+1 b2 3
/ 4 .
la: .

0 x, 1 0 10 1

PHYSICAL REVIEW E68, 016208 (2003

(a) (b) 7OFT
-
P(%)
35 Y
.

0.0 ' .

040614 040617  0.4062C
Q

FIG. 3. Transition of a square-shaped spiral wave to a domain

FIG. 1. Patterns observed in a sine-circle CML and the correpattern:(a) an intermediate state exhibiting both a square-shaped

sponding first return maps of a local time seri@s:regular, quasi-

spiral (the middle pait and a domain statéthe outer papt[{)

periodic spiral wave Q=0.403 87), (b) square-shaped, periodic =0.406 19 and(b) proportion of the spiral domaiR vs ().

spiral wave (1 =0.404 13), andc) periodically oscillating domain

(2=0.406 30). A stack of four line segments with different phaseof Fig. 2(d), nevertheless, indicates that the phase fronts have
values is used as an initial condition. Throughout this paper, tha finite width. The 5-phase spiral wave is the reminiscent of

values ofK and e are fixed at 0.75 and 0.002, respectively.

the 2:5 resonant band. Since the spiral shape changes con-
tinuously and the widths of the phase fronts narrow down

wave, the square-shaped periodic spiral wave and the domagradually, one may conclude that the transition of the quasi-
pattern are both standing waves and are sensitive to the inperiodic spiral wave to the periodic spiral wave is continu-

tial condition. For example, the patterns in Figgb)land

1(c) are obtained as the value 9f is gradually increased, in

ous.
The square-shaped spiral wave further transforms to the

particular, from the regular spiral wave state shown in Fig.domain pattern of Fig. (t) as the parametefd approaches

1(a).

the right end of the 2:5 resonant band: The spiral first dilates

The transition from the quasiperiodic spiral wave of Fig.from the boundary and opens up as shown in Fig).3his

1(a) to the periodic spiral wave of Fig.(}) can be charac-
terized in two different ways. As the value 6f increases,

process takes place in a continuous manner as shown in Fig.
3(b): The central region occupied by the square-shaped spiral

the quasiperiodic spiral wave starts to bend acquiring &hrinks rapidly but continuously to zero. The domain pattern
square symmetrysee Fig. 2a)]. When the value of) in- persists until the system reenters a quasiperiodic regime
creases further, the bent spiral wave becomes more flatten@ghon increasing the value 6i.

and eventually becomes the square-shaped spiral wave of In addition to the square-shaped spiral wave and the do-
Fig. 1(b). While this shape transformation takes place, themain pattern, various polygonal spiral waves are also found
distribution of the phase variablealso changes dramatically within the same 2:5 resonant barisee Fig. 4 In other
from a dispersed spectrufirig. 2(b)] to a state with five words, multiple attractorgspiral§ can coexist even for a
localized peakgFig. 2(d)] via an intermediate statgFig.  fixed value of() [see Fig. 4e)]. Thus, the final state being
2(c)]. The emergence of the sharp peaks in the phase ang#lected depends on the initial condition. For example, the

distribution reflects the fact that steep phase fronts have been

established in space, separating the five domains of different
phases. The finite width of the peaks in the phase distribution
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FIG. 2. Quasiperiodic to periodic spiral wave transitit®:qua-

siperiodic spiral wave having a square symmetfy=0.404 10),

(b) phase angle probability density functioRDPF of a quasiperi-
odic spiral wave(c) PDF for (a), and(d) PDF for a periodic spiral
wave. () is (b) 0.40350,(c) 0.404 10, andd) 0.404 13, respec-
tively.

FIG. 4. Periodic spiral waves havirig) 4 sides,(b) 8 sides,(c)
16 sides, andd) an infinite number of sidege) Phase diagram of
polygonal spiral waves() is 0.404 13, 0.404 28, 0.404 29, and
0.4043[from (a) to (d)]. The polygonal spirals are, in general, not
equilateral. A square lattice of 25856 grids is used.
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FIG. 5. Phase diagram drawn on the spatially averaged winding
numberp of the sine-circle CML(solid line). The winding number FIG. 6. Spiral to antispiral transitiorta) quasiperiodic spiral
p of a single sine-circle map is overlaidashed ling “QP” and ~ wave having a source at its cor@ € 0.403 85),(b) a mixed spiral
“5-P” stand for the quasiperiodic spiral wave and the 5-phase pewave state  =0.40386), andc) quasiperiodic spiral wave having
riodic spiral wave, respectively. The domain patterns are stable fog Sink at its core =0.40387).(d) Plots an averagedFourier
the shaded regions only. Polygonal spirals of Fig. 4 also coexist ipower weighteglwave numbeEvs Q.
the 5-P region, but are not shown in this diagram for clarity; the . )
detailed phase diagram of the polygonal spirals is given in Fig. 4 Wave becomes a square-shaped spiral at mbiffthen, the

square-shaped spiral wave persists until it becomes a domain

regular, octagonal spiral wave of Fig(b} is obtained by pattern eﬂtering the shaded area on the left. Third, the overall
decreasing the value dd from the smooth, banded spiral shape ofp is nearly identical to the winding numberof a
wave of Fig. 4d). But if one had used the square-shapedsingle (uncoupled sine-circle map, except for the intervals
spiral wave of Fig. 4p) as an initial condition and increased ¢’ —c andd’ —d.
the value of(2, the final state would have been the square- The two pointsc’ andd’, at which p starts deviating
shaped spiral wave itself since it is stable there as well. Mosfom p, are significant since an interesting source-sink tran-
significant of all, higher-order polygonal spiral waVi@sg.,  sition arises there. Figure 6 depicts this transition. The regu-
16-faced spiral wave as shown in Fidchor 24-faced spiral  |ar quasiperiodic spiral wave shown in Figabrotates in the
wave (not shown] are also observed within the 2:5 resonantcounterclockwise direction generating an outwardly moving
band. In fact, there seems to be a cascade of side-doublifggye train(i.e., the spiral core acts as a soUrf25]. When
bifurcations of polygonal spiral waves in an increasing sethe parametef) is increased beyond’, the regular spiral
quence of(). The maximum number of faces that the po- yransforms into an antispirdéFig. 6(c)] via the intermediate
lygonal spiral can have, or rather that we can identify, seemstate[Fig. 6(b)]. The antispiral has chirality opposite to the
just limited by the system size. regular spiral, but rotates in the counterclockwise direction

We note that spatial period-doubling bifurcations have atxs in the regular spiral wave of Fig(#5. Consequently, the
tracted much attention in recent years in relation to complexore of the antispiral is a sink. The intermediate state is a
periodic spiral wave$19-22 and to superlattice standing mixed state of an inwardly rotating spiréthe small area
waves[23,24]. The side-doubling transition of polygonal spi- around the coreand an outwardly rotating spirdthe re-
ral waves, yet, is a different type of spatial period-doublingmaining outer pajt As the parameter increases, the area be-
cascade. Our preliminary investigation suggests that the stghg occupied by the antispiral grows at the expense of the
bility of a particular polygonal spiral wave is closely related reqular spiral. Figure @) quantifies this transition with the
with t_he stability of a planar wave traveling in a particular averaged wave numbery, q gradually decays approaching
direction on the square lattice. For example, the octagonghe critical pointc’ from the left and then rapidly increases
spiral wave is stable for th€ range for which the corre-  peyondc’. Within the resolution of our current numerical
sponding planar wave is stable in the direction(df0) as  simulations, the transition is continuous. As Fig. 5 illustrates,
well as in the direction of1,1). o the average frequency of the antispiral wati®., p) is

Figure 5 plots the spatially averaged winding nump@f  smaller than that of the bulk mediugy while the regular
the sine-circle CML as a function @d. The regions of sta- spiral wave has a slightly higher frequency than that of the
bility for different types of patterns are illustrated on top of bulk medium. The source-sink transition arises once again at
it. Several features are notable here. First of all, the domaipointd’.
patterns of the type shown in Fig(c) are found to be stable  In summary, as a simple model system of oscillatory me-
not only near the right end but also near the left end of thelia under an external periodic forcing, a coupled network of
resonant bandshaded regionsin a decreasing sequence of sine-circle maps is investigated numerically. Stable periodic
Q, an initial spiral wave becomes a domain pattern enteringind quasiperiodic spiral waves are shown to exist in a sine-
the left end(shaded regionof the resonant band. Second, circle CML. Some important characteristics of the patterns
stable square-shaped spiral waves are found in the wholgbserved in the BZ experimental syst¢b-7,10 and the
range of the resonant bar{ffom the pointc to d); in a  continuous CGL equations studied earljé2,9,7,8,11 are
decreasing sequence 6I, an initial quasiperiodic spiral well captured in this simple model. In particular, the peri-

016208-3



WOO, LEE, AND LEE PHYSICAL REVIEW E68, 016208 (2003

a) ( first discovered by Vanag and Epstein in a recent experiment
on an excitable BZ reaction-diffusion systd¢@6,27]. Here,
we have shown that an antispiral wave exists in a discrete
model system of sine-circle CML. More recently, as an effort
to understand the underlying mechanism of the antispiral, we
have also investigated a two-dimensional complex Ginzburg-
FIG. 7. Source-sink transition observed in a numerical Simu'a—Landau equation to confirm the existence of the same tran-
tion of CGL equationg A=A~ (1+iB)|Al?A+(1+ia)V?A. The  sition (see Fig. T [29]. Thus, judging from the fact that
outwardly rotating spiral wavesourcg in (@) is transformed into  sjmjlar transitions are observed in two quite different model
Fhe inwardly_ rotating spiral wavésink) in (c) as « _co_ntinuously systems(one is discrete, while the other is continupuas
increasesa is —2.0, —0.6, —0.2 from(a) to (¢). Bis fixed to be  \yq|| a5 in the experiment done by Vanag and Epstein, the
2_516222? frriz;rge Is a gray scale image of R(and has a size of - g5 o antispiral wave transition seems to be a generic
gnas. property of any spiral wave forming system.
Finally, we indicate that the observed phenomena are not
just limited to the 2:5 resonant band but seem to be general.
odic, banded spirals and domain patterns seem to be univebeveral other resonant bands that we have checked have a
sal features of a driven network of nonlinear oscillators iNghape of that is similar to the one shown in Fig. 5, i.e., the
resonance. There is, however, a subtle difference between the nsition pointsc’ andd’ also exist for them as well. Be-

banded spiral waves in continuous systems and those of th§ges, quasiperiodic spiral waves and periodic, banded spiral

discrete system. Above all, none of the previous studies Ofyaves are also popularly observed withior neaj other
spiral waves, which were carried out in a continuous Meyegonant bands.

dium, reported a polygonal spiral. In other words, the po-

lygonal spirals are believed to be a unique property pertain- We thank W. G. Choe for helpful discussions. This work

ing to a discrete system. was supported by the Creative Research Initiatives of the
Spiral waves having a sink at the ca@ntispiral$ were  Korean Ministry of Science and Technology.
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